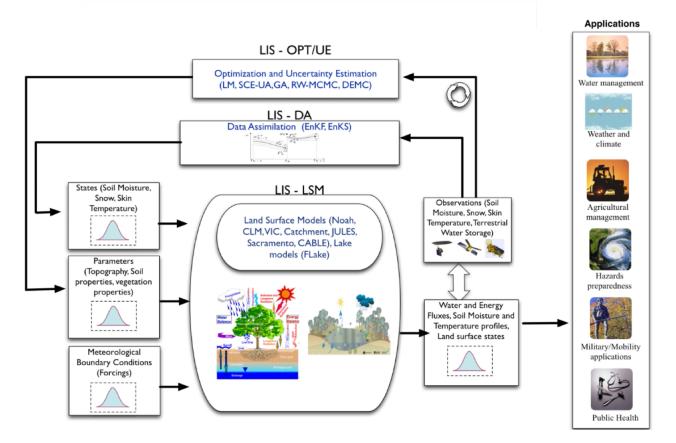


Implementation of Gaussian Processes in an Hydrological Model

^{1,2}Jules Kouatchou, ^{1,2}Craig Pelissier, ³Grey Nearing, ¹Dan Duffy ¹Christa D Peters-Lidard and ¹Jim Geiger

¹NASA Goddard Space Flight Center, Maryland, USA ²Science Systems and Applications Incorporated, Maryland, USA ³University of Alabama, Alabama, USA

LIS Model



Gaussian Regression Process

- Nonparametric and probabilistic model
- Flexible with the capability to adapt the model complexity
- Training data is not summarized by few parameters
- Probabilistic nature allows a structured way of capturing the uncertainties in both the model itself and the measured data.

$$p(\mathbf{f} \mid \mathbf{x}, \theta) = \mathcal{N}(\mathbf{0}, \mid K(\mathbf{x}, \mathbf{x}', \theta))$$

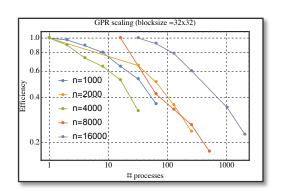
$$K(\mathbf{x}, \mathbf{x}', \theta) = \sigma_f^2 \exp\left[-\frac{1}{2}(\mathbf{x} - \mathbf{x}')\Sigma^{-1}(\mathbf{x} - \mathbf{x}')\right]$$

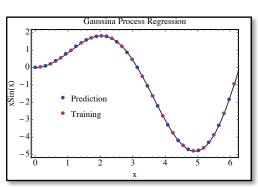
$$p(\mathbf{y} \mid X, \theta) = \int p(\mathbf{y} \mid \mathbf{f}, X, \theta)p(\mathbf{f} \mid X, \theta)d\mathbf{f}$$

$$p(\mathbf{f}_* \mid \mathbf{y}, X, \theta) = \mathcal{N}(\overline{\mathbf{f}}_*, \text{Cov}(\mathbf{f}_*))$$

Computational Aspects of GPR

- GPR can be expensive
- Prediction time can exceed models --comparable with LIS models.





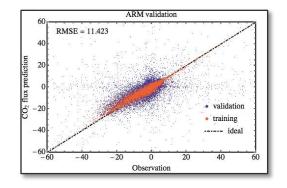
- Dominated by DGEMM and Inversion.
- Matrix size **N** = **#samples** --- limited to a few 10k.
- Usually several 1000s of DGEMM/Inversions

Prediction

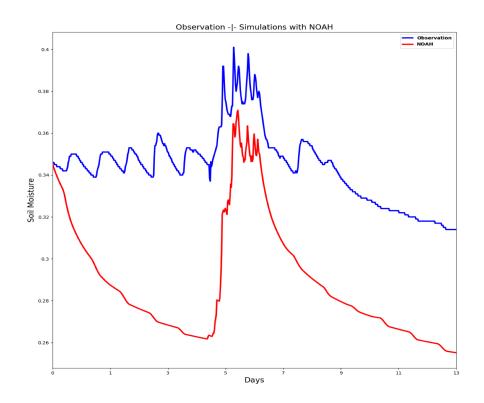
- 1 N X M Matrix-Vector multiplication. N = # samples M= # prediction points.
- Dominated by matrix initialization (exp() function).

Implementation

- Parallelization --- ScaLapack/MKL
- C++ and Fortran (interface only)



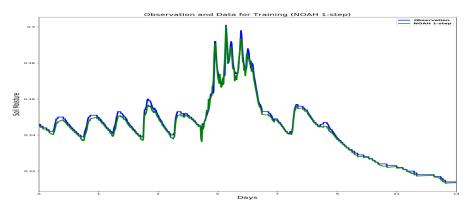
Machine Learning (GPR) in LIS

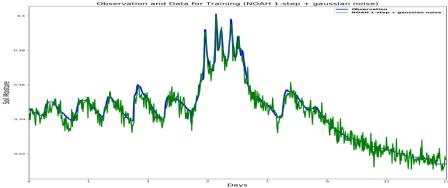


- Develop a ML algorithm (Gaussian Process Regression) that trains on observational data and is HPC enabled.
- Create in LIS a Land Surface Model option that calls the ML subroutines and returns the required output.
- 3. Train (offline) on field data with data assimilation or lagged forcing data.
- 4. Compare the prediction accuracy with other models such as NOAA.

Objective: ML model fills the gap between Observation and NOAH (see figure on the left)

Training Data

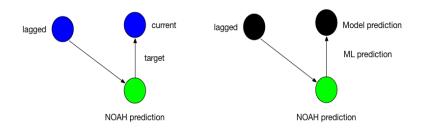




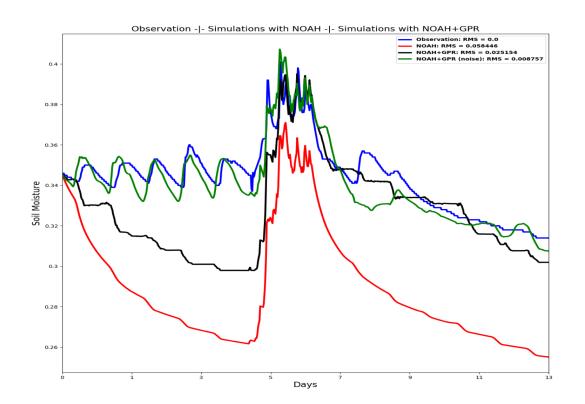
- For a period of three years, ran one timestep at the time NOAH by starting with soil moisture from observation. Repeated several times till equilibration (NOAH 1-step).
- 2. This allows us to capture dynamics in NOAH
- ML training is done on the NOAH deviation from observation

Two sets of training samples:

- Set 1: described above (see top figure on the left)
- Set 2: Complete the NOAH 1-step and add a Gaussian noise to dry data points only. (see bottom figure on the left)



Validation Results



- 1. Ran NOAH with soil moisture from observation as initial value
- 2. The NOAH predicted soil moisture (along with 7 other parameters) is fed into the GPR to produce the deviation from observation
- The new NOAH soil moisture value is the sum of the predicted one and the deviation

Results

- The introduction of the GPR leads to better calculations of soil moisture (black plot).
- Adding Gaussian noise to samples significantly improves the prediction (green plot).

